Overview¶
You need to decompress the example_data.zip
file in your preferred folder, e.g., deepdlncud/
.
There are three required files.
br_sm_lncrna.txt
br_smile.txt
path
to*.fasta
We display 2 pairs of small molecules and lncRNAs to predict their possible regulation types.
1 2 3
sm lncrna 6918837 lnc-CPO-4 60606 HIF1A-AS1
Python¶
We access DeepdlncUD by defining the following parameters.
params = {
'br_fpn': '../../data/deepdlncud/example_data/br_sm_lncrna.txt',
'smile_fpn': '../../data/deepdlncud/example_data/br_smile.txt',
'fasta_fp': '../../data/deepdlncud/example_data/',
'method': 'DenseNet',
'model_fp': '../../data/deepdlncud/model/densenet',
'sv_fpn': '../../data/deepdlncud/example_data/pred.deepdlncud',
}
Command
Output log
import deepdlncud
deepdlncud.predict.sm_lncr_regulation_type(
br_fpn=params['br_fpn'],
smile_fpn=params['smile_fpn'],
fasta_fp=params['fasta_fp'],
method=params['method'],
model_fp=params['model_fp'],
sv_fpn=params['sv_fpn'],
)
____ _ _ _ _ ____
| _ \ ___ ___ _ __ __| | |_ __ ___| | | | _ \
| | | |/ _ \/ _ \ '_ \ / _` | | '_ \ / __| | | | | | |
| |_| | __/ __/ |_) | (_| | | | | | (__| |_| | |_| |
|____/ \___|\___| .__/ \__,_|_|_| |_|\___|\___/|____/
|_|
05/04/2025 07:23:03 logger: =>Prediction starts...
05/04/2025 07:23:03 logger: small-molecule and lncRNA relations:
sm lncrna
0 6918837 lnc-CPO-4
1 60606 HIF1A-AS1
05/04/2025 07:23:03 logger: small-molecule smile map:
sm smile
0 6918837 CC1=C(C2=CC=CC=C2N1)CCNCC3=CC=C(C=C3)/C=C/C(=O)NO
1 60606 COC(=O)[C@H](C1=CC=CC=C1Cl)N2CCC3=C(C2)C=CS3
prob_up pred_type
0 0.503342 Upregulation
1 0.513831 Upregulation
CLI¶
DeepdlncUD can also be used in shell. To know how to use, please type
deepdlncud -h
It shows the usage of different parameters.
-m, --method,
A deep learning method. It can be any below.
DenseNet | CNN | ConvMixer64 | DSConv | LSTMCNN |
MobileNet | ResNet18 | ResNet50 | SEResNet
-br, --br_fpn, binary relations between small molecules and mirnas
-d, --smile_fpn, map between small molecule IDs and their smile strings
-lncr, --fasta_fp, lncRNA fasta file paths
-mf, --model_fp, a model path
-o, --sv_fpn, outputting deepdlncud predictions
You can run it using the following code.
Command
Output
deepdlncud -m DenseNet -br ./data/deepdlncud/example_data/br_sm_lncrna.txt -d ./data/deepdlncud/example_data/br_smile.txt -lncr ./data/deepdlncud/example_data/ -mf ./data/deepdlncud/model/densenet -o ./data/deepdlncud/out.deepdlncud
____ _ _ _ _ ____
| _ \ ___ ___ _ __ __| | |_ __ ___| | | | _ \
| | | |/ _ \/ _ \ '_ \ / _` | | '_ \ / __| | | | | | |
| |_| | __/ __/ |_) | (_| | | | | | (__| |_| | |_| |
|____/ \___|\___| .__/ \__,_|_|_| |_|\___|\___/|____/
|_|
05/04/2025 07:59:33 logger: =>Prediction starts...
05/04/2025 07:59:33 logger: small-molecule and lncRNA relations:
sm lncrna
0 6918837 lnc-CPO-4
1 60606 HIF1A-AS1
05/04/2025 07:59:33 logger: small-molecule smile map:
sm smile
0 6918837 CC1=C(C2=CC=CC=C2N1)CCNCC3=CC=C(C=C3)/C=C/C(=O)NO
1 60606 COC(=O)[C@H](C1=CC=CC=C1Cl)N2CCC3=C(C2)C=CS3
[07:59:33] DEPRECATION WARNING: please use MorganGenerator
[07:59:33] DEPRECATION WARNING: please use MorganGenerator
prob_up pred_type
0 0.503342 Upregulation
1 0.513831 Upregulation
- Sun, J., Si, S., Ru, J., & Wang, X. (2023). DeepdlncUD: Predicting regulation types of small molecule inhibitors on modulating lncRNA expression by deep learning. Computers in Biology and Medicine, 163, 107226. https://doi.org/10.1016/j.compbiomed.2023.107226