Overview¶
You need to decompress the example data.zip
file in your preferred folder, e.g., drutai/
.
There are three required files.
br_sm_target.txt
br_smile.txt
path
to*.fasta
We display 5 relations between small molecules and targets to predict their possible interactions.
1 2 3 4 5 6
sm target 148124 C1KC03 84093 P03901 5757 Q8N0U8 5743 O00238 84093 A0A0H2UXE9
Python¶
We access Drutai by defining the following parameters.
params = {
'br_fpn': '../../data/drutai/example_data/br_sm_target.txt',
'smile_fpn': '../../data/drutai/example_data/br_smile.txt',
'method': 'LSTMCNN',
'fasta_fp': '../../data/drutai/example_data/',
'model_fp': '../../data/drutai/lstmcnn',
'sv_fpn': '../../data/drutai/example_data/pred.drutai',
}
Command
Output log
import drutai
drutai.predict.sm_target_interaction(
br_fpn=params['br_fpn'],
smile_fpn=params['smile_fpn'],
fasta_fp=params['fasta_fp'],
method=params['method'],
model_fp=params['model_fp'],
sv_fpn=params['sv_fpn'],
)
____ _ _
| _ \ _ __ _ _| |_ __ _(_)
| | | | '__| | | | __/ _` | |
| |_| | | | |_| | || (_| | |
|____/|_| \__,_|\__\__,_|_|
02/04/2025 02:12:30 logger: =>Prediction starts...
02/04/2025 02:12:30 logger: small-molecule and target relations:
sm target
0 148124 C1KC03
1 84093 P03901
2 5757 Q8N0U8
3 5743 O00238
4 84093 A0A0H2UXE9
02/04/2025 02:12:30 logger: small-molecule smile map:
sm smile
0 5743 C[C@@H]1C[C@H]2[C@@H]3CCC4=CC(=O)C=C[C@@]4([C@...
1 84093 CC1=CN(C(=O)NC1=O)C2CC(C(O2)COP(=O)(O)OC3CC(OC...
2 148124 CC1=C2[C@H](C(=O)[C@@]3([C@H](C[C@@H]4[C@]([C@...
3 5757 C[C@]12CC[C@H]3[C@H]([C@@H]1CC[C@@H]2O)CCC4=C3...
[02:12:30] DEPRECATION WARNING: please use MorganGenerator
[02:12:30] DEPRECATION WARNING: please use TopologicalTorsionGenerator
[02:12:30] DEPRECATION WARNING: please use MorganGenerator
[02:12:30] DEPRECATION WARNING: please use TopologicalTorsionGenerator
[02:12:30] DEPRECATION WARNING: please use MorganGenerator
[02:12:30] DEPRECATION WARNING: please use TopologicalTorsionGenerator
[02:12:30] DEPRECATION WARNING: please use MorganGenerator
[02:12:30] DEPRECATION WARNING: please use TopologicalTorsionGenerator
[02:12:30] DEPRECATION WARNING: please use MorganGenerator
[02:12:30] DEPRECATION WARNING: please use TopologicalTorsionGenerator
prob_inter pred_type
0 7.233677e-06 Non-interaction
1 6.156772e-04 Non-interaction
2 6.745233e-08 Non-interaction
3 3.606971e-06 Non-interaction
4 3.974514e-03 Non-interaction
CLI¶
Drutai can also be used in shell. To know how to use, please type
drutai -h
It shows the usage of different parameters.
-m, --method,
A deep learning method. It can be any below.
AlexNet | BiRNN | RNN | Seq2Seq |
CNN | ConvMixer64 | DSConv | LSTMCNN |
MobileNet | ResNet18 | ResNet50 | SEResNet |
-br, --br_fpn, binary relations between small molecules and protein targets
-d, --smile_fpn, map between small molecule IDs and their smile strings
-t, --fasta_fp, protein target fasta file paths
-mf, --model_fp, a model path
-o, --sv_fpn, outputting drutai predictions
You can run it using the following code.
Command
Output log
drutai -m LSTMCNN -br ./data/drutai/example_data/br_sm_target.txt -d ./data/drutai/example_data/br_smile.txt -t ./data/drutai/example_data/ -mf ./data/drutai/lstmcnn -o ./data/drutai/out.drutai
____ _ _
| _ \ _ __ _ _| |_ __ _(_)
| | | | '__| | | | __/ _` | |
| |_| | | | |_| | || (_| | |
|____/|_| \__,_|\__\__,_|_|
02/04/2025 02:41:27 logger: =>Prediction starts...
02/04/2025 02:41:27 logger: small-molecule and target relations:
sm target
0 148124 C1KC03
1 84093 P03901
2 5757 Q8N0U8
3 5743 O00238
4 84093 A0A0H2UXE9
02/04/2025 02:41:27 logger: small-molecule smile map:
sm smile
0 5743 C[C@@H]1C[C@H]2[C@@H]3CCC4=CC(=O)C=C[C@@]4([C@...
1 84093 CC1=CN(C(=O)NC1=O)C2CC(C(O2)COP(=O)(O)OC3CC(OC...
2 148124 CC1=C2[C@H](C(=O)[C@@]3([C@H](C[C@@H]4[C@]([C@...
3 5757 C[C@]12CC[C@H]3[C@H]([C@@H]1CC[C@@H]2O)CCC4=C3...
[02:41:27] DEPRECATION WARNING: please use MorganGenerator
[02:41:27] DEPRECATION WARNING: please use TopologicalTorsionGenerator
[02:41:27] DEPRECATION WARNING: please use MorganGenerator
[02:41:27] DEPRECATION WARNING: please use TopologicalTorsionGenerator
[02:41:27] DEPRECATION WARNING: please use MorganGenerator
[02:41:27] DEPRECATION WARNING: please use TopologicalTorsionGenerator
[02:41:27] DEPRECATION WARNING: please use MorganGenerator
[02:41:27] DEPRECATION WARNING: please use TopologicalTorsionGenerator
[02:41:28] DEPRECATION WARNING: please use MorganGenerator
[02:41:28] DEPRECATION WARNING: please use TopologicalTorsionGenerator
prob_inter pred_type
0 7.233677e-06 Non-interaction
1 6.156772e-04 Non-interaction
2 6.745233e-08 Non-interaction
3 3.606971e-06 Non-interaction
4 3.974514e-03 Non-interaction
deepsmirud -m LSTMCNN -br ./data/input/br_sm_mirna.txt -d ./data/input/br_smile.txt -t ./data/input/ -mf ./data/model/lstmcnn -o ./data/out.deepsmirud
- Sun, J., Xu, M., Ru, J., James-Bott, A., Xiong, D., Wang, X., & Cribbs, A. P. (2023). Small molecule-mediated targeting of microRNAs for drug discovery: Experiments, computational techniques, and disease implications. European Journal of Medicinal Chemistry, 115500. https://doi.org/10.1016/j.ejmech.2023.115500