Single site
We will need to install TMKit1 to read a protein sequence and create single-site positions, placed with windows. This will initiate the vector of features, and be prepared for being fed by site-wise features.
After installation, we first read 1aigL.fasta
.
Python
1 2 3 4 5 6 |
|
Output
ALLSFERKYRVPGGTLVGGNLFDFWVGPFYVGFFGVATFFFAALGIILIAWSAVLQGTWNPQLISVYPPALEYGLGGAPLAKGGLWQIITICATGAFVSWALREVEICRKLGIGYHIPFAFAFAILAYLTLVLFRPVMMGAWGYAFPYGIWTHLDWVSNTGYTYGNFHYNPAHMIAISFFFTNALALALHGALVLSAANPEKGKEMRTPDHEDTFFRDLVGYSIGTLGIHRLGLLLSLSAVFFSALCMIITGTIWFDQWVDWWQWWVKLPWWANIPGGING
Generation of all posible residues.
Python
1 2 3 4 5 6 |
|
Output
[
[1],
[2],
[3],
...,
[280],
[281],
]
Adding amino acid types and IDs to the positions of all posible residues.
Python
1 2 |
|
Output
[
[1, 'A', 1, 0],
[2, 'L', 2, 0],
[3, 'L', 3, 0],
...,
[280, 'N', 280, 0],
[281, 'G', 281, 0],
]
Applying a sliding window to each residue pair.
Python
1 2 3 4 5 6 |
|
Output
[
[None, 1, 2],
[1, 2, 3],
[2, 3, 4],
...,
[279, 280, 281],
[280, 281, None],
]
Python
1 2 3 4 5 6 7 |
|
Output
[
[None, 'A', 'L'],
['A', 'L', 'L'],
['L', 'L', 'S'],
...,
['G', 'I', 'N'],
['I', 'N', 'G'],
['N', 'G', None],
]
Initiating feature vector.
Python
1 2 3 |
|
Output
[[], [], [], ..., [], [], []]
281
-
Jianfeng Sun, Arulsamy Kulandaisamy, Jinlong Ru, M Michael Gromiha, Adam P Cribbs, TMKit: a Python interface for computational analysis of transmembrane proteins, Briefings in Bioinformatics, Volume 24, Issue 5, September 2023, bbad288, https://doi.org/10.1093/bib/bbad288 ↩