Evaluation
Plotting evaluation metrics, such as ROCPR, are important for understanding predictive ability. In the current version, we can use PyPropel to draw ROCPR curves.
We use interaction predicted probabilities by the tma300
tool.
tma300_roc_fpr_custom.json
contains false positive rate (FPR) and tma300_roc_tpr_custom.json
contains true positive rate (TPR).
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 import pypropel as pp
X_fpns = {
'tma300' : to ( 'data/eval/tma300/tma300_roc_fpr_custom.json' ),
}
Y_fpns = {
'tma300' : to ( 'data/eval/tma300/tma300_roc_tpr_custom.json' ),
}
fig , ax = plt . subplots (
nrows = 2 ,
ncols = 2 ,
# figsize=(6, 5),
figsize = ( 12 , 10 ),
sharey = 'all' ,
sharex = False ,
)
pp . plot . rocpr (
X_fpns ,
Y_fpns ,
x_label = 'fpr' ,
y_label = 'tpr' ,
title = '' ,
ax = ax [ 0 , 0 ],
)
pp . plot . rocpr (
X_fpns ,
Y_fpns ,
x_label = 'fpr' ,
y_label = 'tpr' ,
title = '' ,
ax = ax [ 0 , 1 ],
)
pp . plot . rocpr (
X_fpns ,
Y_fpns ,
x_label = 'fpr' ,
y_label = 'tpr' ,
title = '' ,
ax = ax [ 1 , 0 ],
)
plt . show ()
Fig 1. ROCPR curves