UMI dedup single panel
We can use UMIche to draw deduplication performance of Markov clustering versus its two important parameters, inflation
and expansion
.
Tabulate the statistics
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | from umiche.io import stat
scenarios = {
# 'pcr_nums': 'PCR cycle',
# 'pcr_errs': 'PCR error',
'seq_errs': 'Sequencing error',
# 'ampl_rates': 'Amplification rate',
# 'umi_lens': 'UMI length',
# 'seq_deps': 'Sequencing depth',
}
methods = {
# 'unique': 'Unique',
# 'cluster': 'Cluster',
# 'adjacency': 'Adjacency',
'directional': 'Directional',
# 'dbscan_seq_onehot': 'DBSCAN',
# 'birch_seq_onehot': 'Birch',
# 'aprop_seq_onehot': 'Affinity Propagation',
'mcl': 'MCL',
'mcl_val': 'MCL-val',
'mcl_ed': 'MCL-ed',
}
dedupstat = stat(
scenarios=scenarios,
methods=methods,
param_fpn=to('data/params.yml'),
)
df_dedup = dedupstat.df_dedup
df_dedup_perm_melt = dedupstat.df_dedup_perm_melt
|
Define uc.plot.dedup_single
for better disease biology study.
Python
| import umiche as uc
t = uc.plot.dedup_single(
df_dedup=df_dedup,
df_dedup_perm_melt=df_dedup_perm_melt,
)
t.strip()
|
Fig 1. Jointgrid plot.
Python
Fig 2. Strip plot.
Python
Fig 3. Stackedbar plot.