Overview¶
You need to decompress the example_data.zip
file in your preferred folder, e.g., deepsmirud/
.
There are three required files.
br_sm_mirna.txt
br_smile.txt
path
to*.fasta
We display 4 pairs of small molecules and miRNAs to predict their possible regulation types.
1 2 3 4 5
sm mirna 5743 MIMAT0000539 84093 MIMAT0009203 148124 MIMAT0000098 5757 MIMAT0000066
Python¶
We access DeepsmirUD by defining the following parameters.
params = {
'br_fpn': '../../data/deepsmirud/example_data/br_sm_mirna.txt',
'smile_fpn': '../../data/deepsmirud/example_data/br_smile.txt',
'fasta_fp': '../../data/deepsmirud/example_data/',
'method': 'LSTMCNN',
'model_fp': '../../data/deepsmirud/model/lstmcnn',
'sv_fpn': '../../data/deepsmirud/example_data/pred.deepsmirud',
}
Command
Output log
import deepsmirud
deepsmirud.predict.sm_mir_regulation_type(
br_fpn=params['br_fpn'],
smile_fpn=params['smile_fpn'],
fasta_fp=params['fasta_fp'],
method=params['method'],
model_fp=params['model_fp'],
sv_fpn=params['sv_fpn'],
)
____ _ _ _ ____
| _ \ ___ ___ _ __ ___ _ __ ___ (_)_ __| | | | _ \
| | | |/ _ \/ _ \ '_ \/ __| '_ ` _ \| | '__| | | | | | |
| |_| | __/ __/ |_) \__ \ | | | | | | | | |_| | |_| |
|____/ \___|\___| .__/|___/_| |_| |_|_|_| \___/|____/
|_|
05/04/2025 12:03:09 logger: =>Prediction starts...
05/04/2025 12:03:09 logger: small-molecule smile map:
sm smile
0 5743 C[C@@H]1C[C@H]2[C@@H]3CCC4=CC(=O)C=C[C@@]4([C@...
1 84093 CC1=CN(C(=O)NC1=O)C2CC(C(O2)COP(=O)(O)OC3CC(OC...
2 148124 CC1=C2[C@H](C(=O)[C@@]3([C@H](C[C@@H]4[C@]([C@...
3 5757 C[C@]12CC[C@H]3[C@H]([C@@H]1CC[C@@H]2O)CCC4=C3...
prob_up pred_type
0 0.050344 Downregulation
1 0.984405 Upregulation
2 0.998275 Upregulation
3 1.000000 Upregulation
CLI¶
DeepsmirUD can also be used in shell. To know how to use, please type
deepsmirud -h
It shows the usage of different parameters.
-m, --method,
A deep learning method. It can be any below.
AlexNet | BiRNN | RNN | Seq2Seq |
CNN | ConvMixer64 | DSConv | LSTMCNN |
MobileNet | ResNet18 | ResNet50 | SEResNet
-br, --br_fpn, binary relations between small molecules and mirnas
-sm, --smile_fpn, map between small molecule IDs and their smile strings
-mir, --fasta_fp, miRNA fasta file paths
-mf, --model_fp, a model path
-o, --sv_fpn, outputting deepsmirud predictions
You can run it using the following code.
Command
Output
deepsmirud -m LSTMCNN -br ./data/deepsmirud/example_data/br_sm_mirna.txt -sm ./data/deepsmirud/example_data/br_smile.txt -mir ./data/deepsmirud/example_data/ -mf ./data/deepsmirud/model/lstmcnn -o ./data/deepsmirud/out.deepsmirud
____ _ _ _ ____
| _ \ ___ ___ _ __ ___ _ __ ___ (_)_ __| | | | _ \
| | | |/ _ \/ _ \ '_ \/ __| '_ ` _ \| | '__| | | | | | |
| |_| | __/ __/ |_) \__ \ | | | | | | | | |_| | |_| |
|____/ \___|\___| .__/|___/_| |_| |_|_|_| \___/|____/
|_|
05/04/2025 12:08:12 logger: =>Prediction starts...
05/04/2025 12:08:12 logger: small-molecule smile map:
sm smile
0 5743 C[C@@H]1C[C@H]2[C@@H]3CCC4=CC(=O)C=C[C@@]4([C@...
1 84093 CC1=CN(C(=O)NC1=O)C2CC(C(O2)COP(=O)(O)OC3CC(OC...
2 148124 CC1=C2[C@H](C(=O)[C@@]3([C@H](C[C@@H]4[C@]([C@...
3 5757 C[C@]12CC[C@H]3[C@H]([C@@H]1CC[C@@H]2O)CCC4=C3...
[12:08:12] DEPRECATION WARNING: please use MorganGenerator
[12:08:12] DEPRECATION WARNING: please use MorganGenerator
[12:08:12] DEPRECATION WARNING: please use MorganGenerator
[12:08:12] DEPRECATION WARNING: please use MorganGenerator
prob_up pred_type
0 0.050344 Downregulation
1 0.984405 Upregulation
2 0.998275 Upregulation
3 1.000000 Upregulation
- Sun, J., Ru, J., Ramos-Mucci, L., Qi, F., Chen, Z., Chen, S., Cribbs, A. P., Deng, L., & Wang, X. (2023). DeepsmirUD: Prediction of Regulatory Effects on microRNA Expression Mediated by Small Molecules Using Deep Learning. International Journal of Molecular Sciences, 24(3). 10.3390/ijms24031878